Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Neuropsychopharmacol ; 82: 35-43, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38490083

RESUMO

As cannabinoid-based medications gain popularity in the treatment of refractory medical conditions, it is crucial to examine the neurocognitive effects of commonly prescribed products to ensure associated safety profiles. The present study aims to investigate the acute effects of a standard 1 mL sublingual dose of CannEpil®, a medicinal cannabis oil containing 100 mg cannabidiol (CBD) and 5 mg Δ9-tetrahydrocannabinol (THC) on neurocognition, attention, and mood. A randomised, double-blind, placebo-controlled, within-subjects design assessed 31 healthy participants (16 female, 15 male), aged between 21 and 58 years, over a two-week experimental protocol. Neurocognitive performance outcomes were assessed using the Cambridge Neuropsychological Test Automated Battery, with the Profile of Mood States questionnaire, and the Bond-Lader Visual Analogue Scale used to assess subjective state and mood. CannEpil increased Total Errors in Spatial Span and Correct Latency (median) in Pattern Recognition Memory, while also increasing Efficiency Score (lower score indicates greater efficiency) relative to placebo (all p < .05). Subjective Contentedness (p < .01) and Amicability (p < .05) were also increased at around 2.5 h post dosing, relative to placebo. Drowsiness or sedative effect was reported by 23 % of participants between three to six hours post CannEpil administration. Plasma concentrations of CBD, THC, and their metabolites were not significantly correlated with any observed alterations in neurocognition, subjective state, or adverse event occurrence. An acute dose of CannEpil impairs select aspects of visuospatial working memory and delayed pattern recognition, while largely preserving mood states among healthy individuals. Intermittent reports of drowsiness and sedation underscore the inter-individual variability of medicinal cannabis effects on subjective state. (ANZCTR; ACTRN12619000932167; https://www.anzctr.org.au).

2.
J Psychopharmacol ; 38(3): 247-257, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38332655

RESUMO

BACKGROUND: Despite increasing medical cannabis use, research has yet to establish whether and to what extent products containing delta-9-tetrahydrocannabinol (THC) impact driving performance among patients. Stable doses of prescribed cannabinoid products during long-term treatment may alleviate clinical symptoms affecting cognitive and psychomotor performance. AIM: To examine the effects of open-label prescribed medical cannabis use on simulated driving performance among patients. METHODS: In a semi-naturalistic laboratory study, 40 adults (55% male) aged between 23 and 80 years, consumed their own prescribed medical cannabis product. Driving performance outcomes including standard deviation of lateral position (SDLP), the standard deviation of speed (SDS), mean speed and steering variability were evaluated using the Forum8 driving simulator at baseline (pre-dosing), 2.5 h and 5 -h (post-dosing). Perceived driving effort (PDE) was self-reported after each drive. Oral fluid and whole blood samples were collected at multiple timepoints and analysed for THC via liquid chromatography-mass spectrometry. RESULTS: A significant main effect of time was observed for mean speed (p = 0.014) and PDE (p = 0.020), with patients displaying modest stabilisation of vehicle control, increased adherence to speed limits and reductions in PDE post-dosing, relative to baseline. SDLP (p = 0.015) and PDE (p = 0.043) were elevated for those who consumed oil relative to flower-based products. Detectable THC concentrations were observed in oral fluid at 6-h post-dosing (range = 0-24 ng/mL). CONCLUSIONS: This semi-naturalistic study suggests that the consumption of medical cannabis containing THC (1.13-39.18 mg/dose) has a negligible impact on driving performance when used as prescribed.


Assuntos
Condução de Veículo , Cannabis , Alucinógenos , Fumar Maconha , Maconha Medicinal , Adulto , Humanos , Masculino , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Maconha Medicinal/farmacologia , Dronabinol/farmacologia , Alucinógenos/farmacologia , Desempenho Psicomotor , Cannabis/efeitos adversos , Fumar Maconha/efeitos adversos
3.
Addict Biol ; 29(1): e13359, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38221807

RESUMO

Driving is a critical everyday task necessitating the rapid and seamless integration of dynamic visually derived information to guide neurobehaviour. Biological markers are frequently employed to detect Δ9-tetrahydrocannabinol (THC) consumption among drivers during roadside tests, despite not necessarily indicating impairment. Characterising THC-specific alterations to oculomotor behaviour may offer a more sensitive measure for indexing drug-related impairment, necessitating discrimination between acute THC effects, chronic use and potential tolerance effects. The present review aims to synthesise current evidence on the acute and chronic effects of THC on driving-relevant oculomotor behaviour. The review was prospectively registered (10.17605/OSF.IO/A4H9W), and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines informed reporting standards. Overall, 20 included articles comprising 12 experimental acute dosing trials, 5 cross-sectional chronic use studies and 3 roadside epidemiological studies examined the effects of cannabis/THC on oculomotor parameters including saccadic activity gaze behaviour, nystagmus, smooth pursuit and eyelid/blink characteristics. Acute THC consumption selectively impacts oculomotor control, notably increasing saccadic latency and inaccuracy and impairing inhibitory control. Chronic cannabis users, especially those with early age of use onset, display enduring oculomotor deficits that affect visual scanning efficiency. The presence of eyelid tremors appears to be a reliable indicator of cannabis consumption while remaining distinct from direct impairment associated with visual attention and motor control. Cannabis selectively influences oculomotor activity relevant to driving, highlighting the role of cannabinoid systems in these processes. Defining cannabis/THC-specific changes in oculomotor control may enhance the precision of roadside impairment assessments and vehicle safety systems to detect drug-related impairment and assess driving fitness.


Assuntos
Canabinoides , Cannabis , Dronabinol , Estudos Transversais , Agonistas de Receptores de Canabinoides
4.
CNS Drugs ; 37(11): 981-992, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945917

RESUMO

BACKGROUND AND OBJECTIVES: Medical cannabis use is increasing in Australia and other jurisdictions, yet little is known about the effects of medical cannabis on cognitive function. Findings from studies of non-medical ('recreational') cannabis may not be applicable to patients using prescribed medical cannabis to manage a health condition. METHODS: In this semi-naturalistic, open-label trial, patients with various health conditions attended a single laboratory session in which they self-administered a standard dose of prescribed medical cannabis as per instructions on the pharmacy label. We assessed cognitive performance using the Cambridge Neuropsychological Test Automated Battery (CANTAB) and Druid application (app) prior to and following (CANTAB: + 3 h; Druid: + 3 and 5.5 h) medical cannabis self-administration. We also assessed subjective drug effects prior to and following (1, 2 and 4 h) medical cannabis self-administration using a range of 0-10 cm visual analogue scales ('stoned', 'sedated', 'relaxed', 'comfortable', 'anxious' and 'confident'). Data were analyzed using linear fixed-effect models. RESULTS: Participants (N = 40; 22 females) were prescribed a range of products including orally administered oils (n = 23) and flower for vaporization (n = 17). Participants had a mean (standard deviation [SD]) age of 41.38 (12.66) years and had been using medical cannabis for a mean (SD) of 10.18 (8.73) months. Chronic non-cancer pain was the most common indication for medical cannabis use (n = 20), followed by sleep disorder (n = 18) and anxiety (n = 11). The mean (SD) delta-9-tetrahydrocannabinol (THC)/cannabidiol (CBD) dose administered by participants was 9.61 (8.52) mg/9.15 (10.11) mg among those using an oil, and 37.00 (24.53) mg/0.38 (1.58) mg among those who vaporized flower, respectively. Participants' performance improved over time on the CANTAB Multitasking Test and Rapid Visual Information Processing test (both p-values <0.001). All other changes in cognitive performance measures over time were non-significant (p > 0.05). Vaporization of flower was associated with significantly stronger subjective feelings of 'stoned' and 'sedated' relative to oils (both p < 0.001). CONCLUSIONS: These findings suggest that prescribed medical cannabis may have minimal acute impact on cognitive function among patients with chronic health conditions, although larger and controlled trials are needed.


Assuntos
Dor Crônica , Fumar Maconha , Maconha Medicinal , Adulto , Feminino , Humanos , Analgésicos Opioides , Dronabinol/farmacologia , Dronabinol/uso terapêutico , Fumar Maconha/psicologia , Maconha Medicinal/efeitos adversos , Óleos
5.
J Psychopharmacol ; 37(5): 472-483, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37129083

RESUMO

BACKGROUND: Medicinal cannabis products containing Δ9-tetrahydrocannabinol (THC) are increasingly accessible. Yet, policy guidelines regarding fitness to drive are lacking, and cannabinoid-specific indexations of impairment are underdeveloped. AIMS: To determine the impact of a standardised 1 mL sublingual dose of CannEpil®, a medicinal cannabis oil containing 100 mg cannabidiol (CBD) and 5 mg THC on simulated driving performance, relative to placebo and whether variations in vehicle control can be indexed by ocular activity. METHODS: A double-blind, within-subjects, randomised, placebo-controlled, crossover trial assessed 31 healthy fully licensed drivers (15 male, 16 female) aged between 21 and 58 years (M = 38.0, SD = 10.78). Standard deviation of lateral position (SDLP), standard deviation of speed (SDS) and steering variability were assessed over time and as a function of treatment during a 40 min simulated drive, with oculomotor parameters assessed simultaneously. Oral fluid and plasma were collected at 30 min and 2.5 h. RESULTS: CannEpil did not significantly alter SDLP across the full drive, although increased SDLP was observed between 20 and 30 min (p < 0.05). CannEpil increased SDS across the full drive (p < 0.05), with variance greatest at 20-30 min (p < 0.001). CannEpil increased fixation duration (p < 0.05), blink rate (trend p = 0.051) and decreased blink duration (p < 0.001) during driving. No significant correlations were observed between biological matrices and performance outcomes. CONCLUSIONS: CannEpil impairs select aspects of vehicle control (speed and weaving) over time. Alterations to ocular behaviour suggest that eye tracking may assist in determining cannabis-related driver impairment or intoxication. Australian and New Zealand Clinician Trials Registry, https://anzctr.org.au(ACTRN12619000932167).


Assuntos
Condução de Veículo , Canabidiol , Cannabis , Alucinógenos , Maconha Medicinal , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Austrália , Canabidiol/farmacologia , Agonistas de Receptores de Canabinoides , Dronabinol , Método Duplo-Cego
6.
Neurosci Biobehav Rev ; 143: 104941, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36370842

RESUMO

Cannabidiol's (CBD) safety profile and broad action has made it a popular treatment option for anxiety and co-occurring sleep disturbance. However, its efficacy in healthy and clinical populations, treatment duration, formulation and doses for optimal therapeutic benefits remains unclear. Selected databases were examined from inception to October 2022. Study selection, data extraction and Cochrane Risk of Bias assessments were conducted according to PRISMA guidelines and registered on the PROSPERO database (CRD42021247476) with 58 full-text studies meeting the eligibility criteria and administered CBD only or with Δ-9-tetrahydrocannabinol (THC) across healthy and clinical populations. In healthy populations and certain non-cannabis using clinical populations, CBD had greater anxiolytic effects without prominent effects on sleep. An inverted U-shaped dose relationship, and CBD ratio to THC in combined treatments likely moderated these effects. Mechanistically, observed CBD effects occurred via primary modulation of the endocannabinoid system and secondary regulation of neuroendocrine function. Additional research is needed to understand CBD mechanisms of action across diverse groups.


Assuntos
Canabidiol , Canabinoides , Transtornos do Sono-Vigília , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Dronabinol , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Ansiedade/tratamento farmacológico , Transtornos do Sono-Vigília/tratamento farmacológico , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...